metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Low-temperature rerefinement of nonmerohedrally twinned tripyridinium bis[tetrabromidoferrate(III)] bromide

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 25 February 2009; accepted 26 February 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.016 Å; R factor = 0.043; wR factor = 0.106; data-to-parameter ratio = 24.6.

The asymmetric unit of the title double salt, $(C_5H_6N)_3$ -[FeBr₄]₂Br, consists of three pyridinium cations, two tetrahedral bromidoferrate(III) anions and a bromide anion. The three cations each form one $N-H \cdots Br$ hydrogen bond to the bromide anion. The crystal under investigation was a nonmerohedral twin, with a portion of 22% for the minor twin component.

Related literature

The authors of the original room-temperature study noted twinning but the refinement program then could not take this into consideration; see: Lowe et al. (1994).

Experimental

Crystal data (C₅H₆N)₃[FeBr₄]₂Br $M_r = 1071.21$

Monoclinic, P2 a = 7.5602 (1) Å

b = 14.0125 (2) A	
c = 13.5609 (2) Å	
$\beta = 95.172 \ (1)^{\circ}$	
V = 1430.76 (3) Å ³	
7 - 2	

Data collection

Bruker SMART APEX	13428 measured reflections
diffractometer	6460 independent reflections
Absorption correction: multi-scan	6006 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.098, T_{\max} = 0.154$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.106$	$\Delta \rho_{\rm max} = 1.29 \text{ e} \text{ Å}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -1.71 \text{ e } \text{\AA}^{-3}$
6460 reflections	Absolute structure: Flack (1983),
263 parameters	3046 Friedel pairs
109 restraints	Flack parameter: 0.10 (2)

Mo $K\alpha$ radiation $\mu = 13.59 \text{ mm}^{-1}$

 $0.30 \times 0.25 \times 0.20$ mm

T = 123 K

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.88 0.88	2.35 2.59	3.202 (9) 3.292 (8)	163 137
	<i>D</i> -H 0.88 0.88 0.88	D−H H···A 0.88 2.35 0.88 2.59 0.88 2.52	$D-H$ $H\cdots A$ $D\cdots A$ 0.882.353.202 (9)0.882.593.292 (8)0.882.523.279 (7)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

The author thanks the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2380).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Lowe, C. B., Schultz, A. J., Shaviv, R. & Carlin, R. L. (1994). Inorg. Chem. 33, 3051-3054.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m402 [doi:10.1107/S1600536809007090]

Low-temperature rerefinement of nonmerohedrally twinned tripyridinium bis[tetrabromidoferrate(III)] bromide

S. W. Ng

Comment

(type here to add)

Experimental

The crystals were provided by Dr. Nasser Safari of Shahid Beheshti University. Pyridine (2.2 ml, 25 mmol) was added to a solution of ferric bromide (1.25 g, 4.23 mmol) dissolved in a mixture of 1.2 M hydrobromic acid and 2.4 M acetic acid (20 ml). The red solution was set aside for two weeks, after which crystals separated out.

Refinement

The refinement initially converged to an R_1 value of 0.088, but there were large peaks/deep holes. The crystal is in fact a nonmerohedral twin. The law, as given by *PLATON* (Spek, 2003), is (-1 0 0, 0 - 1 0, 0.323 0 1). The refinement, with an approximate twin component of 22%, halved the R_1 index. The twinning affected the anisotropic temperature factors of the carbon and nitrogen atoms; these were restrained to be nearly isotropic.

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.95, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N).

The final difference Fourier map had large peaks/holes in the vicinity of the bromide atoms.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C₅H₆N]₃[FeBr₄]₂[Br].

tripyridinium bis[tetrabromidoferrate(III)] bromide

Crystal data	
$(C_5H_6N)_3[FeBr_4]_2Br$	$F_{000} = 992$
$M_r = 1071.21$	$D_{\rm x} = 2.487 \ {\rm Mg \ m}^{-3}$

Monoclinic, $P2_1$ Hall symbol: P 2yb a = 7.5602 (1) Å b = 14.0125 (2) Å c = 13.5609 (2) Å $\beta = 95.172$ (1)° V = 1430.76 (3) Å³ Z = 2

Data collection

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å	
Cell parameters from 8983 reflections	
$\theta = 2.7 - 28.3^{\circ}$	
$\mu = 13.59 \text{ mm}^{-1}$	
T = 123 K	
Irregular block, brown	
$0.30 \times 0.25 \times 0.20 \text{ mm}$	

Bruker SMART APEX diffractometer	6460 independent reflections
Radiation source: fine-focus sealed tube	6006 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 123 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.098, \ T_{\max} = 0.154$	$k = -18 \rightarrow 18$
13428 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 4.7139P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.106$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 1.29 \text{ e} \text{ Å}^{-3}$
6460 reflections	$\Delta \rho_{min} = -1.71 \text{ e } \text{\AA}^{-3}$
263 parameters	Extinction correction: none
109 restraints	Absolute structure: Flack (1983), 3046 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.10 (2)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.27784 (12)	0.49992 (6)	0.74070 (6)	0.02428 (19)
Br2	0.27108 (13)	0.35971 (6)	0.50468 (7)	0.0250 (2)
Br3	0.02833 (11)	0.60181 (6)	0.50814 (7)	0.02457 (19)
Br4	0.52742 (11)	0.59765 (7)	0.52624 (7)	0.0268 (2)
Br5	0.52708 (11)	0.89250 (6)	0.95876 (7)	0.02335 (19)
Br6	0.75284 (12)	1.00789 (7)	0.74713 (6)	0.02522 (19)

Br7	1.02585 (12)	0.91096 (8)	0.97548 (8)	0.0356 (3)	
Br8	0.74006 (15)	1.13935 (7)	0.98802 (7)	0.0350 (2)	
Br9	0.74762 (11)	0.65558 (7)	0.83903 (6)	0.02359 (19)	
Fe1	0.27879 (15)	0.51483 (9)	0.56879 (9)	0.0177 (2)	
Fe2	0.76356 (16)	0.98860 (9)	0.91855 (9)	0.0197 (3)	
N1	0.7426 (11)	0.4395 (6)	0.7619 (7)	0.038 (2)	
H1	0.7427	0.4931	0.7959	0.045*	
N2	0.7876 (12)	0.7029 (7)	1.0778 (6)	0.0343 (19)	
H2	0.7993	0.7233	1.0173	0.041*	
N3	0.3634 (10)	0.7457 (5)	0.7543 (5)	0.0203 (15)	
Н3	0.4324	0.7032	0.7863	0.024*	
C1	0.8048 (15)	0.4412 (10)	0.6741 (9)	0.047 (3)	
H1A	0.8457	0.4988	0.6470	0.056*	
C2	0.8080 (17)	0.3569 (11)	0.6239 (9)	0.054 (3)	
H2A	0.8582	0.3549	0.5622	0.065*	
C3	0.7408 (16)	0.2758 (9)	0.6606 (10)	0.048 (3)	
НЗА	0.7363	0.2182	0.6234	0.058*	
C4	0.6797 (14)	0.2790 (8)	0.7523 (9)	0.038 (2)	
H4	0.6371	0.2226	0.7810	0.046*	
C5	0.6802 (15)	0.3618 (9)	0.8016 (7)	0.038 (2)	
Н5	0.6357	0.3647	0.8649	0.046*	
C6	0.7428 (14)	0.6150 (8)	1.0919 (7)	0.035 (2)	
Н6	0.7246	0.5738	1.0363	0.042*	
C7	0.7210 (16)	0.5797 (8)	1.1832 (9)	0.041 (3)	
H7	0.6873	0.5151	1.1919	0.049*	
C8	0.7500 (12)	0.6418 (8)	1.2642 (7)	0.032 (2)	
H8	0.7361	0.6199	1.3294	0.039*	
C9	0.7984 (14)	0.7340 (8)	1.2482 (7)	0.035 (2)	
Н9	0.8192	0.7771	1.3021	0.042*	
C10	0.8163 (16)	0.7633 (7)	1.1548 (8)	0.039 (2)	
H10	0.8497	0.8274	1.1433	0.047*	
C11	0.1903 (12)	0.7447 (6)	0.7669 (6)	0.0208 (17)	
H11	0.1435	0.6989	0.8092	0.025*	
C12	0.0815 (12)	0.8104 (7)	0.7182 (6)	0.0260 (18)	
H12	-0.0420	0.8102	0.7262	0.031*	
C13	0.1503 (13)	0.8766 (6)	0.6576 (7)	0.0256 (19)	
H13	0.0757	0.9231	0.6241	0.031*	
C14	0.3330 (13)	0.8744 (6)	0.6459 (7)	0.0260 (19)	
H14	0.3831	0.9190	0.6035	0.031*	
C15	0.4375 (12)	0.8082 (7)	0.6956 (7)	0.0269 (19)	
H15	0.5614	0.8062	0.6888	0.032*	
Atomic displacement	nt narameters (λ^2)				
(A)					

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0313 (4)	0.0211 (4)	0.0195 (4)	-0.0010 (4)	-0.0025 (3)	-0.0005 (3)
Br2	0.0325 (5)	0.0188 (4)	0.0241 (4)	-0.0009 (4)	0.0039 (4)	-0.0032 (3)
Br3	0.0164 (4)	0.0285 (5)	0.0285 (4)	0.0046 (4)	0.0009 (3)	0.0077 (4)

supplementary materials

Br4	0.0168 (4)	0.0268 (5)	0.0369 (5)	-0.0041 (4)	0.0030 (3)	0.0016 (4)
Br5	0.0181 (4)	0.0236 (4)	0.0286 (4)	-0.0015 (3)	0.0038 (3)	0.0022 (3)
Br6	0.0311 (4)	0.0272 (4)	0.0175 (4)	0.0014 (4)	0.0031 (3)	0.0012 (4)
Br7	0.0186 (4)	0.0520 (7)	0.0356 (5)	0.0033 (4)	-0.0007 (4)	0.0137 (5)
Br8	0.0507 (6)	0.0292 (6)	0.0246 (5)	-0.0099 (5)	0.0008 (4)	-0.0090 (4)
Br9	0.0204 (4)	0.0272 (5)	0.0225 (4)	0.0047 (4)	-0.0019 (3)	-0.0033 (3)
Fe1	0.0153 (5)	0.0167 (6)	0.0206 (6)	0.0002 (5)	-0.0005 (4)	-0.0003 (5)
Fe2	0.0186 (5)	0.0230 (6)	0.0173 (6)	-0.0020 (5)	0.0003 (4)	0.0008 (5)
N1	0.025 (4)	0.030 (4)	0.056 (5)	0.003 (3)	-0.013 (4)	-0.012 (4)
N2	0.038 (4)	0.043 (5)	0.023 (4)	0.011 (4)	0.010 (3)	0.009 (3)
N3	0.020 (3)	0.019 (3)	0.021 (3)	-0.002 (3)	-0.006 (3)	0.002 (3)
C1	0.030 (5)	0.055 (6)	0.055 (6)	-0.009 (5)	-0.004 (4)	0.028 (5)
C2	0.042 (6)	0.083 (8)	0.038 (5)	0.003 (6)	0.009 (5)	0.000 (6)
C3	0.040 (5)	0.047 (6)	0.056 (6)	0.008 (5)	-0.005 (5)	-0.021 (5)
C4	0.028 (5)	0.028 (5)	0.055 (6)	-0.007 (4)	-0.013 (4)	0.016 (4)
C5	0.036 (5)	0.058 (6)	0.021 (4)	0.001 (5)	0.005 (4)	-0.002 (4)
C6	0.043 (5)	0.035 (5)	0.024 (4)	0.013 (4)	-0.011 (4)	-0.005 (4)
C7	0.044 (5)	0.026 (5)	0.051 (6)	-0.013 (4)	-0.009 (5)	0.005 (4)
C8	0.028 (4)	0.045 (5)	0.024 (4)	0.000 (4)	-0.001 (3)	0.010 (4)
C9	0.037 (5)	0.039 (5)	0.029 (5)	-0.002 (4)	0.004 (4)	-0.013 (4)
C10	0.049 (5)	0.022 (4)	0.048 (5)	0.002 (4)	0.010 (5)	0.001 (4)
C11	0.023 (4)	0.019 (4)	0.021 (4)	-0.002 (3)	0.004 (3)	-0.001 (3)
C12	0.023 (4)	0.031 (4)	0.025 (4)	0.001 (4)	0.004 (3)	-0.004 (3)
C13	0.027 (4)	0.020 (4)	0.029 (4)	0.008 (4)	0.001 (3)	0.005 (3)
C14	0.028 (4)	0.020 (4)	0.031 (4)	-0.010 (3)	0.008 (4)	0.005 (3)
C15	0.021 (4)	0.032 (4)	0.028 (4)	-0.007 (4)	-0.003 (3)	-0.003 (4)

Geometric parameters (Å, °)

2.341 (2)	С3—НЗА	0.9500
2.340 (2)	C4—C5	1.340 (16)
2.338 (1)	C4—H4	0.9500
2.326 (1)	С5—Н5	0.9500
2.342 (1)	C6—C7	1.357 (15)
2.335 (1)	С6—Н6	0.9500
2.331 (2)	C7—C8	1.404 (15)
2.326 (2)	С7—Н7	0.9500
1.319 (15)	C8—C9	1.366 (15)
1.320 (15)	С8—Н8	0.9500
0.8800	C9—C10	1.349 (15)
1.296 (14)	С9—Н9	0.9500
1.347 (14)	С10—Н10	0.9500
0.8800	C11—C12	1.364 (13)
1.335 (11)	C11—H11	0.9500
1.340 (12)	C12—C13	1.372 (13)
0.8800	C12—H12	0.9500
1.36 (2)	C13—C14	1.405 (13)
0.9500	С13—Н13	0.9500
1.357 (19)	C14—C15	1.358 (13)
	$\begin{array}{l} 2.341 \ (2) \\ 2.340 \ (2) \\ 2.338 \ (1) \\ 2.326 \ (1) \\ 2.326 \ (1) \\ 2.342 \ (1) \\ 2.335 \ (1) \\ 2.335 \ (1) \\ 2.335 \ (1) \\ 2.326 \ (2) \\ 1.319 \ (15) \\ 1.320 \ (15) \\ 0.8800 \\ 1.296 \ (14) \\ 1.347 \ (14) \\ 0.8800 \\ 1.335 \ (11) \\ 1.340 \ (12) \\ 0.8800 \\ 1.36 \ (2) \\ 0.9500 \\ 1.357 \ (19) \end{array}$	2.341 (2)C3—H3A2.340 (2)C4—C52.338 (1)C4—H42.326 (1)C5—H52.342 (1)C6—C72.335 (1)C6—H62.331 (2)C7—C82.326 (2)C7—H71.319 (15)C8—C91.320 (15)C8—H80.8800C9—C101.296 (14)C9—H91.347 (14)C10—H100.8800C11—C121.335 (11)C11—H111.340 (12)C12—C130.8800C12—H121.36 (2)C13—C140.9500C13—H131.357 (19)C14—C15

C2—H2A	0.9500	(C14—H14		0.9500
C3—C4	1.366 (17)	(C15—H15 0		0.9500
Br4—Fe1—Br3	107.44 (6)	1	N1—C5—C4		119.7 (9)
Br4—Fe1—Br2	111.41 (6)	1	N1—C5—H5		120.2
Br3—Fe1—Br2	111.18 (6)	(С4—С5—Н5		120.2
Br4—Fe1—Br1	111.51 (6)	1	N2—C6—C7		122.4 (10)
Br3—Fe1—Br1	108.77 (6)	1	N2—C6—H6		118.8
Br2—Fe1—Br1	106.55 (6)	(С7—С6—Н6		118.8
Br8—Fe2—Br7	112.54 (6)	(С6—С7—С8		117.7 (10)
Br8—Fe2—Br6	107.52 (6)	(С6—С7—Н7		121.1
Br7—Fe2—Br6	109.63 (6)	(С8—С7—Н7		121.1
Br8—Fe2—Br5	109.89 (6)	(С9—С8—С7		119.1 (9)
Br7—Fe2—Br5	107.40 (6)	(С9—С8—Н8		120.4
Br6—Fe2—Br5	109.86 (6)	(С7—С8—Н8		120.4
C1—N1—C5	123.5 (10)	(С10—С9—С8		119.2 (10)
C1—N1—H1	118.2	(С10—С9—Н9		120.4
C5—N1—H1	118.2	(С8—С9—Н9		120.4
C6—N2—C10	120.6 (9)	1	N2-C10-C9		121.0 (10)
C6—N2—H2	119.7	1	N2—C10—H10		119.5
C10—N2—H2	119.7	(С9—С10—Н10		119.5
C11—N3—C15	123.4 (8)	1	N3—C11—C12		119.1 (8)
С11—N3—H3	118.3	1	N3—C11—H11		120.4
C15—N3—H3	118.3	(С12—С11—Н11		120.4
N1—C1—C2	117.3 (11)	(C11—C12—C13		120.1 (8)
N1—C1—H1A	121.4	(C11—C12—H12		120.0
C2—C1—H1A	121.4	(С13—С12—Н12		120.0
C3—C2—C1	121.2 (11)	(C12—C13—C14		118.9 (8)
C3—C2—H2A	119.4	(С12—С13—Н13		120.6
C1—C2—H2A	119.4	(С14—С13—Н13		120.6
C2—C3—C4	118.3 (11)	(C15—C14—C13		119.5 (8)
С2—С3—НЗА	120.8	(С15—С14—Н14		120.3
С4—С3—НЗА	120.8	(С13—С14—Н14		120.3
C5—C4—C3	119.8 (10)	1	N3—C15—C14		119.1 (8)
C5—C4—H4	120.1	1	N3—C15—H15		120.5
C3—C4—H4	120.1	(С14—С15—Н15		120.5
C5—N1—C1—C2	-1.8 (17)	(C7—C8—C9—C10		0.3 (17)
N1—C1—C2—C3	3.5 (19)	(C6—N2—C10—C9		-0.3 (17)
C1—C2—C3—C4	-4.1 (19)	(C8—C9—C10—N2		-0.2 (17)
C2—C3—C4—C5	2.9 (18)	(C15—N3—C11—C12		-0.2 (13)
C1—N1—C5—C4	0.6 (17)	1	N3—C11—C12—C13		-0.3 (13)
C3—C4—C5—N1	-1.2 (17)	(C11—C12—C13—C14		0.9 (14)
C10—N2—C6—C7	0.7 (16)	(C12—C13—C14—C15		-1.0 (14)
N2—C6—C7—C8	-0.5 (17)	(C11—N3—C15—C14		0.1 (13)
C6—C7—C8—C9	0.0 (16)	(C13—C14—C15—N3		0.5 (14)
Hydrogen-bond geometry (Å, °)					
D—H···A	D-	-H	H···A	$D \cdots A$	D—H···A
N1—H1···Br9	0.8	8	2.35	3.202 (9)	163

supplementary materials

N2—H2···Br9	0.88	2.59	3.292 (8)	137
N3—H3…Br9	0.88	2.52	3.279 (7)	146

